Сопряжённые операторы - definição. O que é Сопряжённые операторы. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Сопряжённые операторы - definição

Сопряжённые операторы; Сопряженные операторы; Сопряженный оператор; Гильбертов сопряжённый оператор

Сопряжённые операторы         

понятие операторов теории (См. Операторов теория). Два ограниченных линейных оператора Т и Т* в гильбертовом пространстве называются сопряжёнными, если для всех векторов х и у из Н справедливо соотношение (Tx, у) =(х, Т*у). Например, если

,

то оператору

сопряжён оператор

,

где - функция, комплексно сопряжённая с К (х, у). Если оператор Т не ограничен и его область определения Dm всюду плотна (см. Плотные и неплотные множества), то С. о. определяется на множестве тех векторов у, для которых можно найти такой вектор у*, что равенство (Tx, у) = (х, у*) справедливо для всех хDm, при этом полагают Т*у = у*. Понятие сопряженности обобщается также на операторы в др. пространствах.

Сопряжённый оператор         
Сопряжённый оператор — обобщение понятия эрмитово-сопряжённой матрицы для бесконечномерных пространств.
Сопряжённые дифференциальные уравнения         

понятие теории дифференциальных уравнений. Уравнением, сопряжённым с дифференциальным уравнением

, (1)

называется уравнение

, (2)

Соотношение сопряженности взаимно. Для С. д. у. имеет место тождество

,

где ψ (у, z) - билинейная форма относительно у, z и их производных до (n - 1)-го порядка включительно. Знание k интегралов сопряжённого уравнения позволяет понизить на k единиц порядок данного уравнения. Если

y1, у2,... уn (3)

- фундаментальная система решений уравнения (1), то фундаментальная система решений уравнения (2) даётся формулами

(i = 1, 2, ..., n),

где Δ - определитель Вроньского (см. Вронскиан) системы (3). Если для уравнения (1) заданы краевые условия, то существуют сопряжённые с ними краевые условия для уравнения (2) такие, что уравнения (1) и (2) с соответствующими краевыми условиями определяют сопряжённые дифференциальные операторы (см. Сопряжённые операторы). Понятие сопряженности обобщается также на системы дифференциальных уравнений и на уравнения с частными производными.

Wikipédia

Сопряжённый оператор

Сопряжённый оператор — обобщение понятия эрмитово-сопряжённой матрицы для бесконечномерных пространств.